

Central Solar Heating Plants with Seasonal Thermal Energy Storage in Germany

H. Drück, R. Marx, D. Bauer, J. Nußbicker-Lux

Institute of Thermodynamics and Thermal Engineering (ITW)

Research and Testing Centre for Thermal Solar Systems (TZS)

University of Stuttgart, Pfaffenwaldring 6, 70550 Stuttgart, Germany

Institute for Thermodynamics and Thermal Engineering

Research and Testing Centre for Thermal Solar Systems (TZS)

TZS the largest test centre for thermal solar systems in Europe

research & development

education & knowledge transfer

testing & inspection

Demonstration projects with STES (Solarthermie2000 plus) 1/2

Hamburg (1996)

3.000 m² flat plate coll., 4.500 m³ Water tank

Neckarsulm (1997)

5.670 m² flat plate coll., 63.300 m³ Borehole Thermal Energy Storage (BTES)

Rostock (2000)

980 m² Solar-Roof, 20.000 m³ Aquifer Thermal Energy Storage (ATES)

Friedrichshafen (1996)

4.050m² flat plate coll., 12.000 m³ Water tank

Steinfurt (1998)

510 m²
flat plate coll.,
1.500 m³
Pit TES
(gravel / water)

Hannover (2000)

1.350 m² flat plate coll., 2.750 m³ Water tank

Demonstration projects with STES (Solarthermie2000 plus) 2/2

Chemnitz, 1. phase (2000)

540 m² Vacuum tubes, 8.000 m³ Pit TES (gravel / water)

Munich (2007)

2.900 m² flat plate coll., 5.700 m³ Water tank

Eggenstein (2008)

1.600 m²
flat plate coll.,
4.500 m³
Pit TES
(gravel / water)

Attenkirchen (2002)

800 m²
Solar-Roof
9.850 m³
Water tank and
Boreholes

Crailsheim (2007)

7.500 m² flat plate coll., 39.000 m³ Borehole Thermal Energy Storage (BTES)

STES:

Seasonal Thermal Energy Storage

Central Solar Heating Plants with Seasonal Thermal Energy Storage under scientific accompaniment of ITW

	collector area [m²]	backup heating	heat pump [kW _{th}]	buffer store [m³]	STES [m³]	f _{sol} (designed) [%]
Friedrichshafen	4 050	gas boilers 720 + 900 kW	-	-	HTES 12 000	50
Neckarsulm	6 570	gas boiler 2 000 kW	500	2x 100	BTES 63 300	50
Rostock	980	gas boiler 250 kW	110	30	ATES 20 000	62
Crailsheim	5 710 (March 2011)	district heating	485	100 + 480	BTES 39 000	50
Eggenstein	1 600	gas boilers 2x 600 kW	60	30	GWTES 4 500	35-40

Latest Central Solar Heating Plants with Seasonal Thermal Energy Storage (CSHPSS)

---> First CSHPSS integrated into existing buildings in Germany

CSHPSS Eggenstein

1600 m² solar collectors and 4500 m³ gravel/water store

- full surface insulated (even bottom)
- 30 evacuated chambers filled with insulation
 (expanded glass granules and foam glass gravel)
- HDPE-liner restricted to temperature of 80°C

- bottom layer washed gravel
- middle layer sand (excavation)
- top layer washed gravel
- charging and discharging through out 2 wells

Institute for Thermodynamics and Thermal Engineering

Research and Testing Centre for Thermal Solar Systems (TZS)

Renovation Solar

after

Bestand

- 11 CSHPSS have been built in Germany in the last 15 years
- four seasonal storage concepts are successfully demonstrated;
 each concept is in operation in at least one CSHPSS plant
- experiences from the first pilot plants led to technical improvement, higher efficiencies and cost reduction in next generation plants
- there is no optimum storage concept for all applications concepts have to be chosen individually according to local ground conditions and application

main experiences (STES):

- no serious failures (leakages ...) have been observed by now
- moisture protection of the insulation is important
- system (integration) is crucial: e.g. the system temperatures fix the storage capacity!

Outlook - What we needed in the future

- numerous advanced demo-systems
- development of systems-concepts designed for retrofit-applications
- development of "intelligent" concepts of integration of other renewable energy sources such as biomass and heat pumps
- further development of seasonal heat storage technology also taking into account advanced technologies such as thermo-chemical heat stores
- development of standardised sub-system concepts / modules (e.g. heat distribution systems)
- advanced system concepts (e.g. "low-ex"; Systems operated on low temperatures combined with decentralised heat pumps
- cost reduction
- know-how transfer to planners and engineers
- awareness raising
-